Wayne Chen Tu and Ernst L. Leiss
Department of Computer Science. University of Houston, Houston, Texas 77204-3475, USA
coscel @cs.uh.edu

Abstract

Virtual memory frees the programmer from the time consuming burden of ensuring that the
algorithms used operate efficiently on the data set. However, a carelessly designed program may
perform unnecessary page transfers between main memory and secondary memory. By applying
code transformations we can utilize the data set residing in main memory more efficiently and reduce
the need for frequent page transfers. Our main objective is to restructure programs by using loop
distribution and loop interchange. We present an algorithm that determines which code
transformation technique, or combination of techniques, should be applied in order to reduce the
memory requirements of loops. Loop distribution and loop interchange are not always sermnantically
valid because of data dependences, but other transformation techniques can be used in order to
eliminate those dependences. By applying these techniques we can reduce the amount of memory
that is required for an iteration of a loop and we can adjust the access pattern to match the storage
pattern more closely, thus reducing unnecessary page transfers and improving program
pbrfoman €.

1. INTRODUCTION

Yirtual memory has made programmmg easier by relieving the programmer from the burden of storage
rnanagement. However, a carelessly designed program can cause virtual memory to degrade performance by
D 'forﬂmg UnNNECessary page transfers. Tms usuall y occurs when the access pattern does not "nau,l (il

storage patern and so a page uI data that is read into main memory from secondary m
utilized before it is paged out. A classic example of this is the following FORTRAN code ¢
) Hf 4 =1, E@zﬁ

X €
The matrix A is stored J}/ olumns (dem_uit for FORTRAN) but the code accesses A by rows. If th
024 words, main m ory holds 1000 pages, and the replacement aigorithm of virtual ! .
ast Recently U O 8 576 page transfers are done. If we transform the code so that it accesses the
by columns instea fi

£ r rows, the transformed code requires only 1024 page transfers!

hw
O“’“

The goal f*f code transformation is to find a technique that will either reduce the amount of memory that is
required or modify s"he access pattern so that it follows the storage pattern more closely. We can reduce the
required by modifying loops. Consider the following code:
Armv A, B, C, D 1024
Do 10 I = 1, 1024
A =1+ 2% B =1 + 3*L; CA) = 4/3*L + 2); D(I) = 1
10 Continue
The loop requires all four arrays for each iteration. Assuming that each array is contained in a single page of
memory, the loop requires four pages of memory. There are two ways to reduce the amount of memory that
is required. The first is to break the loop into smaller pieces:
Array A, B, C, D 1024
Do 10 I = 1, 1024
A =1 + 2%
10 Continue
Do 20 1 = 1, 1024
B =1+ 3*I
20 Continue
Do 301 =1, 1024
Cd) = 4/(3*I + 2)
30 Continue
77

=~

[ne]

Do 40 I .= 1, 1024
D@ =1
40 Continue
Then each loop will only require one page of memory. The second method is to divide the range of the loop
variable so that less of each array is needed.
Array A, B, C, D 1024
Do 10 I = E, 256
Ay =1+ 2% BA) =1 + 3*L; CO)
10 Continue
Do 20 I = 257, 512

I
EEN
Y

o~
(8]
=
Yoz

+2); DD =

sl

/@(E) =1+ 2% By =1 + 3*I; CA) = 4/3*1L + 2): D) =1
20 Continue
Do 30 I = 513, 768

AD =1+2*; BAO) =1+ 3%, CO) = 4/3*1 + 2); D@ =1
30 Continue
Do 40 I = 769, 1024

AD=1+2*L; BO =1+ 3*; CO) =4/3*1 + 2); DA) =1

40 Continue

Each loop has reduced the range of access so that only a fourth of the arrays is needed. Therefore
theoretically each loop should only need one page of memory. This method works only if the granularity of
memory fits the range of the loop: if a page of memory holds 256 words and virtual memory can hold a total
of 1024 words, then each of the loops will only read into memory the page that contains the elements that it
needs, thus reouu“ng a total of only 16 page transfers. But if a page holds 512 words and virtual memory
can hold a total of 1024 words, the loops will require a total of 4096 page transfers. This technique is use ful
only if the granularity of memory is larger than the size of the range. Therefore splitting up the range of
indices of an array may or may not improve the /O performance.

Chapter 2 discusses dependences and dependence analysis. Chapter 3 reviews the most common types of
code transformation techniques and summarizes why they can or cannot be used. Chapter 4 lists the
gransformation technigues that can be used and introduces the combinations of techniques that will be used in
the algorithm. Chapter 5 provides different examples of the algorithm being applied. Chapter 6 summarizes
the results, discusses limitations, and suggests future enhancements.

2. DATA DEPENDENCES
articular interest in optimizing code because most of the execution time occurs in loops. So if
f a loop can be improved through the use of code transforming techniques without
) behavior of the remaining code, then the entire program can be impmved, Not all
techniques are semantically Valid because of dependences within the loop. There is an
ry of data dependences and their determination. We refer to [ZC91] and [L95].

3. CODE TRANSFORMATION TECHNIQUES

irious code transformation techniques and examine each to determine if it is useful in improving

We

present v
VO behavior,

3.1 Loop Distribution
Loop distribution, also known as loop fusion, is used to distribute ope:ations in order to reduce explicit
s }/n‘,hmmda‘“zon Loop distribution will only change the execution order of statements; so it will not eliminate
dependences, but it will change loop carried dependences into loop independent dependences.

Loop distribt uce VO in two
ways. The first is by reducing the amount of memory requsred for each loop iteration. If ¢ ch variable is
stored on a single page, the original loop requires six pages for each iteration while its distributed version
requires at most three, or 50% less. The second is by breaking up the loops nto sirapler Aoops which are
more likely mﬂdzdaiei f@r other techniques, e. g., loop 1n'erchame Consider the code:

Do 16

10N is a very valuable transformation for improving /O behavior. It can |

> cannot be interchanged because
Sy, k : 1ents can be mnbww mm«

R

=
Q
<
]
@
e}
o
=]
o
o
=
—
D
-
]
=
ﬁk)
oo
3
(=N
]
=
[m8
=3
™
<
2,
=
(D
2]
—
o
=
w)
£
=
o
D
o
O
(D
O
("(—

Do 20 1 = 1, 1024
DLY) = A(T-1,J+1) * 2
20 Continue
3.2 l@@p In
used fo interchange loop variables
inner loops can be vectorized ([L95],[ZC

rmation technique because by interchangi
‘au ern more hlouely The objz;f“nw is o us
nsider the following code:

ﬁ(‘*%aﬁ) + D(E9K)

= 1024,

urnn major order. Assume N =
in memory. Thus, each colur

are accessed by rows, but matrix

i1l '1"1 Ve m *63(:1 mto m Fmozry e

o
o 3

SRR =N
i -

,‘
Sk

jsv)
Lo
=h

LA
O -

tion Oe‘rwe@n processors on parallel
‘mo Eoop independent d xepe__ len I
¢ ecause it modifies statements to
ed together. A_ ignment does not aid in 1
¢ paitern to maich the storage pattern.

(Variable Lppymw
statements, by replicating the variable which causs the cycle
porary variable. Consider the fol llowing code:

X D = A + AJ+D)
10 Con ?‘Lt
There 15 a loop f’yde created by the true dependence from S, to S, and the anti dependence from S, to S;. We
break the cycle by removing the anti dependence:
Do10I=1,N
Se: Atemp(D) = A(L+1); 82 AD = B + CO); S;: DD = AD) + Atemp(D)
10 Continue
Xeplication is a useful transformation te h“}ique because it can be used to break dependence e cycles so that
o0 p distribution can be ayphﬁd The Ox‘ié nal code above could not be distributed because of the dependence

3

cle, but the new code with the replicated array can be distributed:

»-»A r‘&j

=

w

80

Do 10 I =1, N
Se: Atemp(I) = A(I+1)
10 Continue
Do20I=1,N
Si: A =BO + CD)
20 Continue
Do 30I=1,N
Sy: D) = A + Atemp(I)
30 Continue
The original code required all four arrays for each iteration of the loop, but this new code only requires three
arrays at the most for an iteration of a loop. Thus replication is very useful because it allows us to distribute
loops.that ordinarily could not be distributed [L95] [ZC91].

3.5 Node Splitting
Node splitting is a technique that is similar to variable copying. Its main purpose is to break up a node
(statement) so that other components of the statement can be taken out and vectorized. Node splitting is a
useful technique to use for /O behavior improvement because it allows us to break up statements so that we
can reduce the memory requirements of the loop.

3.6 Multiversion Loops
Multiversion loops are used whenever we are unable to transform code because we don’t have enough
syntactic information. But we may create two or more versions of the loop so that at run time one of the
resulting loops will be executed, which may improve the /O performance [L95].

3.7 Strip Mining
Strip mining is a technique that is used to take advantage of the target system, such as the vector length of a
vector register [L95]. It is not a useful technique for I/O performance improvement because its main purpose
is to take advantage of special constructs that exist on vector or parallel machines and these special features
will not help to improve I/O behavior.

3.8 ILoop Collapsing
Loop collapsing is a technique that creates a single, larger loop out of two smaller loops so that more
statements can be vectorized together. It is not a useful technique for I/O behavior improvement because it
does not reduce memory requirements [L95].

3.9 Loop Fusion
Loop fusion is a similar technique to loop collapsing except that it operates on separate loops instead of
nested loops. It is not a useful technique for I/O performance improvement because it combines loops so that
loop overhead is reduced. When two loops are fused together, the memory requirements increase, which is
exactly the opposite effect of loop distribution. Therefore loop fusion should not be used [L95].

3.10 Wavefront Method
The wavefront method is a technique that changes the access paitern of a multidimensional iteration space to
follow a wavefront rather than a particular index. It will not aid in improving I/O behavior because it accesses
the array elements diagonally which is worse than accessing them along their storage pattern. Therefore the
wavefront method should not be used [L95].

3.11 Scalar Expansion

Scalar expansion is a transformation that can be applied to a scalar variable within a loop. It creates a copy of
the variable for each iteration of the loop nest by replacing the variable with an appropriately dimensioned
array. This is used to eliminate dependences involving the variable so that the code may be vectorized. Scalar
expansion must be applied very carefully because if the range is too large, then it may cause a large,
undesirable increase in a program’s memory requirements. If this occurs then we can either refrain from
applying the transformation or restrict the application to lie within the innermost loop. In general, this
rransformation may be used if it will remove dependence cycles and allow statements to be distributgd
[ZCI1].

3.12 Array Shrinking
Array shrinking is the converse transformation of scalar expansion. It is used to undo the effects of scalar
expansion. This technique is not used otherwise because determining which arrays can be reduced into a

single scalar variable is very difficult because there are too many possible side effects. Therefore this is not a
useful technigue for I/O performance improvement since is it only used to reverse the effecis of scalar
expansion [MCQI] [L85].

3.13 Index Set Splitting
Index Set Splitting is a transformation used to split the index range of a loop in order that fewer elements of
an array are accessed. If the index range is larger than the page size, then index set splitting can be used to
improve I/O performance. Index set splitting can be a useful technique to improve /O behavior.

3.14 Loop Peeling

Loop peeling is a technique used to remove anomalies in the control flow of a loop. Loop peeling is a
technique similar to index set splitting, but unlike index set splitting. loop peeling is not a useful technique if
one wants to improve I/O performance. Index set splitting can be applied to the inner loops, which may
reduce memory requirernents; loop peeling, on the other hand, involves both the outer and inner locp to
break up a loop. Since both loops are used, less of each variable is used, which leads to less efficient use of
resident variables, which leads to more page transfers. Therefore loop peeling is not a useful technique to
improve /O behavior.

3.15 Loop Unrolling
Ns@p unrolling is a technique where copies of the i@op body are made so that the 3000 over
wced. It is not useful to improve VO performance because it does not reduce memory
gm”ge the access pattern to match the storage pattern of arrays.

4. THE ALGORITHM

outline the /O performance improvement digemhm (IOPIA). We have already determined
formation techniques useful to 1mpr0ve /O performance are loop distribution, L,:)p
cation (variable copying), node splitting, multiversion loops, scalar expansion, and in
e primary goal is to apply loop mterbhangﬁ because it is the transformation which will provide i
O performance improvement. Loop mtbrmangy cannot be applied when there exists an ange
preventing dependence (IPD) in the loop, or if there is an order of indices error (OIE), i.e., the indices for
AID=A(,1) do not match. No transformation will eliminate an OIE while loop distribution is the only
transformation that can elirninaie an IPD, by distributing the statemnents so that the IPD no longer exists in the
loop. Cyclic dependences will cause loop distribution to fail; to break a cyclic dependence we apply the
‘rrane.fornations replication, multiversion loops and scalar expansion. If the IPD cannot be broken, we use

replication, multiversion loops, scalar expansion and node splitting to distribute as much of the loop away
from the IPD so that some of the loop might be interchanged. IOPIA can be broken down into two main
ases: p;Ocesemg a single loop and processmg a nested loop. In Section 4.1 we explain how the IOPIA
mproves the VO behavior of a single loop. Section 4.2 applies IOPIA to a nested loop. Section 4.3
discusses the criteria ensuring that the transformations preserve the semantics of the given code. Section 4.4
gives the pseudocode for the TOPIA, Section 4.5 sketches its time complexity.

““'D

4.1 Single Loop

Loop interchange cannot be applied in a single loop. Single loops cause few page transfers compared to
nested loops, unless the amount of available memory is very limited. Thus, little improvement can be
expected from transforming a single loop. For single loops. IOPIA checks if the memory required by the
loop exceeds the available memory. If so, IOPIA first attempts to apply loop distribution to reduce the
memory requirernents; otherwise, it tries to apply multiversion loop, variable copying, scalar expansion and
node splitting to break the cyclic dependences that caused loop distribution to fail. Once the memory
requirements of the loop is reduced so that the available exceeds the required memory, IOPIA terminaies

4.2 Nested Loops

Nested loops are where the most I/O improvement are made. Before any transformations are applied, the
IOPIA checks whether the memory required by the loop exceeds the available memory. if so, IOPIA
processes the loop. The goal of IOPIA is to apply loop interchange to a nested loop. The only time when
interchange cannot be applied is when there exists an IPD in the Ioop body or when an OIE is detected. If an
OIE exists, the loops cannot be interchanged. The IPD can occur in two different situations; the IPD is either
a dependence from a statement onto itself (Type A; IPD-TA), or a dependence between two different
statemnents (Type B; IPD-TB). For the case IPD-TA, the only transformation technique which might be able

81

to break the dependence is multiversion loops. Here is the method IOPIA uses to process a nested loop
containing an IPD-TA:
Step 1: If applicable, apply multiversion loops to break the IPD
Step 2: If possible, distribute the loop to separate statements from the IPD
Step 3: If any statements were not separated from the IPD, then apply the appropriate transformation(s)
(multiversion loops, variable copying and scalar expansion) in order to distribute statements away from
the IPD
Step 4: If any statements still remain bound to the IPD, apply node splitting (if applicable) in order to
separate variables away from the IPD
After Step 4, the algorithm will examine the output. If the performance of the transformed code is worse than
the original, the algorithm will revert back to the original code.

For the case IPD-TB, the dependence may be broken by distributing the two statements into different loops.
Two statements that have an IPD between them can always be distributed, unless they are part of a
dependence cycle. Here is the method that IOPIA uses to process a nested loop containing an IPD-TB:
Step 1: If possible, apply loop distribution to break the IPD
Step 2: If distribution failed, apply the appropriate transformation(s) (multiversion loops, variable
copying, and scalar expansion) in order to distribute the statements and break the IPD
Step 3: If the IPD cannot be broken, distribute the loop in order to separate statements away from the IPD
Step 4: If the IPD cannot be broken and some statements could not be separated from the IPD, apply the
appropriate transformation(s) (multiversion loops, variable copying and scalar expansion) in order to
distribute statements away from the IPD
Step 5: If the IPD cannot be broken and some statements still remain bound to the IPD, apply node
splitting (if applicable) in order to separate variables from the IPD

4.3 Transformation Techniques
For each of the techniques involved (multiversion loop, variable copying, scalar expansion, index set
splitting), we can formulate criteria that assure that the code resulting from applying the corresponding code
transformation is semantically valid (i. e., the new code computes the same results as the original code).
Because of the page limit, we refer to [T96] for more information about these criteria.

4.4 IOPIA Pseudocode

The algorithm applied to any arbitrary set of statements Sy,...,S, in a loop L will either provide some
improvement to the I/O behavior of the loop, or in the worst-case, leave the loop unchanged. We collect
information from the source code and organize it into three tables ([H95, T96]). The first structure is the
Instruction Table. It contains essentially syntactic information about the program statements. The second is
the Array Table which holds syntactic data specifically about arrays. The final structure is the Index Table
which holds the data about the array indices involved. Because of the page limit, we refer the reader for
details on the deta structures used in the algorithm to [T96].

Here is the pseudocode for the algorithm IOPIA; a comprehensive implementation of this algorithm is
currently under way:

General Approach

1. Scan the program to build the tables.
2. Build the dependence graph and enter the data into the Instruction Table
3. If the memory used in the loop is less than the amount of available memory, then goto Step 9
4. If the index table contains more than one loop id, then goto Step 6
5. Distribute the loop
5.1. if distribution fails, or if the distributed code still requires more memory than is available, apply
multiversion loops, variable copying, scalar expansion and node splitting in order to distribute further
5.2. goto Step 9
6. if the Instruction Table does not contain an IPD or an OIE, then interchange the loop and goto Step 9
7. if the Instruction Table contains an OIE, goto Step 8.2
8. if the Instruction Table contains an IPD
8.1. If the IPD is Type B, then distribute
8.1.1. if distribution fails to break the IPD, apply multiversion loops, variable copying and scalar
expansion in order to distribute and break the IPD
8.1.2. if the IPD is broken, apply interchange and goto Step 9
8.1.3. if the IPD still exists, then goto Step 8.2
82 2 Ifthe IPD is Type A, then apply multiversion loops to try to break the IPD
8.2.1. if multiversion loops failed, then distribute

8.2.2. if some statements still exist in the same loop as the IPD, apply multiversion loops, variable
copying and scalar expansion in order to distribute the statements away from the IPD
8.2.3. if some staternents still exist in the same 1uop as the IPD, then apply node splitting
8.2.4., if we have made things worse, gher undo all changes and goto Step 9
9. return the result

Multiversion Loops Algorithm:
1. if the apolicable criterion holds
i.1. find the values for the runtime value that break the dependence
1.2. duphcale the entire loop
1.3. prefix each loop with an if statement for the respective values of the runtime variable
1.4. distribute the loop which contains the values that do not contain the dependence

Copying Algorithm:
pylmau e criterion holds
create a new variable and new assignment statement
nsert the new assignment statement before both statements of the dependence cycle
modify the statement to use the new variable
istribute the loop

i.ifd

et
mwu\sw
Q‘fﬂ b

Scalar Expansion Algorithm:

1. if the applicable criterion holds

1.1. change all occurrences of the scalar variable into an array variable
1.2. distribute the loop

Node ,pﬁﬁaa' g
1. if the applic
1. create a new variable and assignment statement

2. insert the statement textually before the two staterments which are involved in a depend
3. modify ma ﬂa ‘ement to use the new variable

he loop

Algorithm:
criterion holds

4.5 Brief Time Complexity Determination of IOPLA
The IOFIA algorithm is used at compile time, not at run time; thus the time complexity of the al;
he number of statements in the loop, but not the amount of data. The input to the al

tements Sy,....S, (of fixed complcxuy, where n is the number of statements in the loop. Ste p
time. Step 2 requires O(n) ume Step 3 15 O(1). Step 4 requires O(n) time, while Step 5 take

O(1) time, as does Step 6. Step 7 requires @(n). Thus. the overall time complexity of the [OPIA aigomhm is
D(gz where n is the size of the code. Most importantly, IOPIA's time complexity does not depend on the
size of the data.

5. DISCUSSION OF RESULTS

We present examples demonstrating the effectiveness of the code restructuring algorithm. We assume that the
storage scheme is column major, the working set size WS and page size PS are given as input, and the
replacement strategy used for virtual memory management is (pure) LRU (Least Recently Used).

Example 5.1 with WS=2, PS=1024
Dol = 1, 2048

S A = B + CO)

S,: E@) = FO) + G

Sy BI) =CO) * 2

S FI))y = GA) * 2

Ss: C) = (A + B@) / CO)

Se: G = (E(D + F)) / GA@)
End Do

IOPIA distributes the loop into the following:
Do 1=1,2048 S; End Do

Do I=1,2048 S; End Do
Do I=1,2048 S; End Do
De1=1,2048 S; End Do
DoI=1,2048 S, End Do
Do I =1, 2048 S¢ End Do 83

84

Four of the blocks still require more memory than is available, but IOPIA cannot apply any other
transformations to them. With the working set size equal to 2, the original code requires 32,768 page
transfers, while the transformed code requires 24,582, an improvement of 24.98%.

Example 5.2
Do I =1, 2048
Sis A(l) = B + CO) * DO
Sz D@ = B - CA)
S;: BE+1) = AQ) * C(D)

Sg: E(@) = FO + GO * HD
Ss: G(I+1) = E@) + HO
Se: H() = GI) + F(D)

End Do

Case 1 WS=6, P5=2048: IOPIA distributes the code resulting in:

Do I =1, 2048 S;; S; End Do

Dol=1, 2048 S, End Do

Do I =1, 2048 S;; Ss; S¢ End Do
The original code requires 10,243 page transfers, while the transformed code requires 8, an improvement of
89.92%.
Case 2 WS=3, PS=2048: First IOPIA does loop distribution, but the memory required by the first and
the last loop SUM exceed the available memory, so IOPIA does node splitting on the first loop:

Do I = 1, 2048

TI(I) = CO * D)

1}

End Do
Do I =1, 2048
Si's A = BOM + TLD
S;: B+1) = AD) * CO)
End Do

The original code requires 28,672 page transfers, the transformed code 12,294, for an improvement of
57.12%. Thus, IOPIA continues to process loops until their memory requirements are reduced to below the
available resources, or until no more transformations can be performed.

Example 5.3 with WS=3, PS=2048

Do I = 1, 2048
St A =B + COD
S B = A * DO
S;: CO) = BA) + BI+1)
Ss: E(M = CO * DD
Ss: DM =A * A

End Do

After the initial distribution step of IOPIA, no change is made to the loop because nothing can be distributed.
Thus, IOPIA applies two different transformations, variable copying and scalar expansion. Variable copying
creates a new statement and modifies the statement S, resulting in (after distribution):
Do I = 1, 2048
Se: T1(D) =
End Do
Do I =1, 2048

B(I+1)

Si: A =B + CO)
S;: B = A * D)
S3': C() = BA) + T
Sq: E@ = CO * DA
Ss: DIy =A * A

End Do

Scalar expansion changes all of the occurrences of the scalar variable A into an array variable, resulting in
(after distribution):

DolI=1,2048 S; End Do
Do I =1,2048 S; End Do
Do I =1, 2048 S, End Do
Do I =1,2048 S; End Do
Dol=1,2048 S, End Do
Do I = 1 2048 S; End Do

The original code requires 6 145 page transfers, the transformed code 11, an improvement of 99.82%.

Example S’.,é%
Do I = 1, 2048
Do j = 1, 2048

S ALY = B(LJ) + CEJ) * DALY
8,0 B(LJ) = CLJ) + DLJ)

S;c C(LJ) = CAJ) + C{I-1J+1)

Sgt E(@LJ) = F(LJ) - GILJ)

S FOLD = B * BEALD

Se: HILY = FALD + GILY) * BELD

nultiversi

te as m
ut » and interchan
St Do End Do
S, Do End Do
23 Do End Do
S Do End Do
Ss Do End Do

;Uﬁ fion v

100)
ea n's rm;mfﬁ Fuwmet,ai.aﬂ
> 50 can

well as wnpm 'mg the deper €an
hould be applied, if an order of i

GRAPHY

S

1 Press, Ann Arbor, Mich 3
hrough Loop Interchanges, M. S. Thesis,
sity 1995.
_”1 FParafrase l”“djEC‘)‘S Fortran Analyzer. Major Module Documentation. i@C,MﬂCQ.Z
L, Department of wumpu T Science, Universit y of llinois at Urbana-Champai
Parallel and Vector Compuring: A Practical | Introduction, McGraw-Hill,] | :
Padua and M. J. Wolfe, Advanced Compiler Optimizations for Supercomputers, CACM,

~‘,4

A.

F
[

Decernber, 1184-1201, 1986.
[T72] B. E. Tarjan, Depth First Search and Linear Graph Algorithms, Computing, 1, 1972.
(196 W. C Tu, /O Performance Improvement Thwwvh the Use of Code Tran yormamonu, M. S. Thesis,

Department of Computer Science, University of Houston 1996.

[W82] M. J. Wolfe, 0ptlmwmg Superc ornpzlers;ar Supercomputers, Ph.D. Dissertation, Technical Report
82-1009, Department of Computer Science, University of Illinois at Urbana- Champa@n 1982.

[ZC91] H. Zima and B. Chapman, Supercompilers for Parallel and Vecior Computers, Addison-Wesley,
New York, NY, 1991.

