
1/0 Performance Improvement Through the 
Use of Code Transformations 

W ayne Chen Tu and Emst L. Leiss 
Department of Computer Science. University of Houston, Houston, Texas 7720-t-3475, USA 

coscel @cs.uh.edu 

Abstract 
Virtual memory frees the programmer from the time consuming burden of ensuring that the 
algorithms used operate efficiently on the data set. However, a carelessly designed program may 
perform unnecessary page transfers between main memory and secondary memory. By applying 
code transformations we can utilize the data set residing in main memory more efficiently and reduce 
the need for frequent page transfers. Our main objective is to restructure programs by using loop 
distribution and loop interchange. We present an algorithm that determines which code 
transformation technique, or combination of techniques, should be applied in order to reduce the 
memory requirements of loops. Loop distribution and loop interchange are not always semantically 
valid because of data dependences, but other transformation techniques can be used in arder to 
elirninate those dependences. By applying these techniques we can reduce the amount of memory 
that is required for an iteration of a loop and we can adjust the access pattem to match the storage 
pattern more closely, thus reducing unnecessary page transfers and improving program 
performance. 

l. INTRODUCTION 
Virtual memory has made programming easier by relieving the programmer from the burden of storage 
management. However, a carelessly designed program can cause virtual memory to degrade performance by 
performing unnecessary page transfers. This usually occurs when the access pattern does not match the 
storage pattern and so a page of data that is read into main memory from secondary memory is not fully 
utilized before ít is paged out. A classic example of this is the following FORTRAN code fragment: 

Do 10 1 = 1, 1024 
Do 1 O J = 1, 1024 

A(I,J) = 1 + J 
10 eontinue 

The matrix A is stored by columns (default for FORTRAN) but the code accesses A by rows. If the page size 
is 1024 words, main memory holds 1000 pages, and the replacement algorithm of virtual memory is LRU 
(Least Recently U sed), 1,048,576 page transfers are done. If we transform the code so that it accesses the 
data by columns instead of rows, the transformed code requires only 1024 page transfers! 

The goal of code transformation is to find a technique that will either reduce the amount of memory that is 
required or modify the access pattem so that it follows the storage pattern more closely. We can reduce the 
amount of memory that is required by modifying loops. Consider the following code: 

Array A, B, e, D 1024 
Do 1 O I = 1, 1024 

A(I) = 1 + 2*1; B(l) = I + 3*1; C(I) = 4/(3*1 + 2); D(l) = 1 
10 Continue 

The loop requires all four arrays for each iteration. Assuming that each array is contained in a single page of 
memory, the loop requires four pages of memory. There are two ways to reduce the amount of memory that 
is required. The first is to break the loop into smaller pieces: 

Array A, B, e, D 1024 
Do 10 1 = 1, 1024 

A(l) = 1 + 2*1 
10 eontinue 
Do 20 1 = 1, 1024 

B(l) = 1 + 3*1 
20 eontinue 
Do 30 1 = 1, 1024 

e(I) = 4/(3*1 + 2) 
30 eontinue 

77 



-~ 

--

The: to d1vide: tbe 

-~ + :;; 
~ I 

-- I + 

I + ~-~ - I 

- ::;:: I 

3 revievv~ the 
sun1n1_adzes cannot 

be used and introéuces the combinations of 

'Valuable~ tra.nsíor.:rration for 
'~"'·-"~"""' the arnount of me:tTlory 



Do 10 I = 1, 1024 . 
Do 10 J = 1, 1024 

A(I,J) = B(I,J) + C(I,J) 
10 Conthme 
Do 20 I = 1, 1024 

Do 20 J = 1, 1024 
D(I,J) = A(I-1,J+1) * 2 

20 Continue 
Now each of the nested loops can be interchanged and the values for D will be correct. 

Do 1 O J = 1, 1024 
Do 1 O I = 1, 1024 

A(I,J) = B(I,J) + C(I,J) 
10 Continue 
Do 20 J = 1, 1024 

Do 20 I = 1, 1024 
D(I,J) = A(I-1,J+1) * 2 

20 Continue 

3.2 Loop Interchange 
Loop interchange is used to interchange loop variables so that a loop carried dependence can be moved 
outwards so that the inner loops can be vectorized ([L95],[Ze91)). 

Loop interchange is a very valuable code transforrnation technique because by interchanging we can 
modify the access pattern to match the storage pattern more closely. The objective is to use each page more 
fully and to eliminare unnecessary page transfers. eonsider the following code: 

Do 10 I = 1, N 
Do 10 J = 1, N 

Do 10 K= 1, N 
S: C(I,J) = C(I,J) + A(I,K) * B(K,J) + D(I,K) 

10 Continue 
Let A, B, e and D (of size 1024x1024) be stored in column major order. Assume N= 1024, each page 
holds 1024 words, and virtual memory can hold 1000 pages in memory. Thus, each column of each array is 
stored on exactly one page. In the code above, A, e and D are accessed by rows, but matrix B is accessed by 
columns. To find the val u e of C(l, 1), virtual memory will ha ve to read into memory exactly 2050* 1024 
pages. Therefore the code requires 2050* 1024* 1024 page transfers. If we interchanged the I with the K 
loop, the matrices A, C and D are accessed colurnn-major while only B is accessed row-major. To find the 
value for C(l,l) now, virtual memory will need toread into memory exactly 1024*1024 + 3 pages. Thus for 
the modified code, a total of (1024*1024 + 3)*1024 page transfers occurs: by ínterchanging the loops we get 
an improvement of almost 50o/c. 

3.3 Alignment 
Alignment is used to reduce the need for explicit synchronization between processors on parallel machines. It 
does this by changing loop carried dependences into loop independent dependences [L95]. For I/0 
performance improvement, alignment is not useful because it modifies statements to be smarter so that a 
larger group of statements can be parallehzed together. Alignment does not aid in reducing memory 
requirements nor does it help modify the access pattern to match the storage pattem. 

3.4 Replication (Variable Copying) 
Replication breaks a dependence cycle between statements, by replicating the variable which causs the cycle 
into a temporary variable and then using that temporary variable. eonsider the following code: 

Do 10 I = 1, N 
S1 : A(I) = B(I) + C(I); S2 : D(I) = A(I) + A(I+l) 

10 Continue 
There is a loop cycle created by the true dependence from S1 to S2 and the anti dependence from S2 to S1. We 
break the cycle by removing the anti dependence: 

Do 10 I = 1, N 
S0 : Atemp(I) = A(I+1); S1 : A(I) = B(l) + C(I); S2 : D(I) = A(I) + Atemp(I) 

10 Continue 
Replication is a useful transforrnation technique because it can be used to break dependence cycles so that 
loop distribution can be applied. The original code above could not be distributed because of the dependence 79 
cycle, but the new code with the replicated array can be distributed: 



Do 10 1 = J, N 
S0 : Atenip(l) = A(l+1) 

10 Continue 
Do 20 1 = 1, N 

St: A(l) = B(l) + C(l) 
20 Continue 
Do 30 1 = 1, N 

S2 : D(l) = A(l) + Atemp(l) 
30 Continue 

The original code required all four arrays for each iteration of the loop, but this new code only requires three 
arrays at the most for an iteration of a loop. Thus replication is very useful because it allows us to distribute 
loops.that ordinarily could not be distributed [L95] [ZC91]. 

3.5 Node Splitting 
Node splitting is a technique that is similar to variable copying. Its main purpose is to break up a node 
(statement) so that other components of the statement can be taken out and vectorized. Node splitting is a 
useful technique to use for I/0 behavior improvement because it allows us to break up statements so that we 
can reduce the memory requirements of the loop. 

3.6 Multiversion Loops 
Multiversion loops are used whenever we are unable to transform code because we don't have enough 
syntactic information. But we may create two or more versions of the loop so that at run time one of the 
resulting loops will be executed, which may improve the I/0 performance [L95]. 

3.7 Strip Mining 
Strip mining is a technique that is used to take advantage of the target system, such as the vector length of a 
vector register [L95]. It is not a useful technique for I/0 performance improvement because its main purpose 
is to take advantage of special constructs that exist on vector or parallel machines and these special features 
will not help to improve I/0 behavior. 

3.8 Loop Collapsing 
Loop collapsing is a technique that creates a single, larger loop out of two smaller loops so that more 
statements can be vectorized together. It is not a useful technique for I/0 behavior improvement because it 
does not reduce memory requirements [L95]. 

3.9 Loop Fusion 
Loop fusion is a similar technique to loop collapsing except that it operates on separate loops instead of 
nested loops. It is not a useful technique for I/0 performance improvement because it combines loops so that 
loop overhead is reduced. When two loops are fused together, the memory requirements increase, which is 
exactly the opposite effect of loop distribution. Therefore loop fusion should not be used [L95]. 

3.10 Wavefront Method 
The wavefront method is a technique that changes the access pattem of a multidimensional iteration space to 
follow a wavefront rather than a particular index. It will not aid in improving I/0 behavior because it accesses 
the array elements diagonally which is worse than accessing them along their storage pattem. Therefore the 
wavefront method should not be used [L95]. 

3.11 Scalar Expansion 
Scalar expansion is a transformation that can be applied to a scalar variable within a loop. It creates a copy of 
the variable for each iteration of the loop nest by replacing the variable with an appropriately dimensioned 
array. This is used to eliminate dependences involving the variable so that the code may be vectorized. Scalar 
expansion must be applied very carefully because if the range is too large, then it may cause a large, 
undesirable increase in a program's memory requirements. If this occurs then we can either refrain from 
applying the transformation or restrict the application to lie within the innermost loop. In general, this 
transformation may be used if it will remove dependence cycles and allow statements to be distributed 
[ZC91]. 1 

3.12 Array Shrinking 
80 Array shrinking is the converse transformation of scalar expansion. It is used to undo the effects of scalar 

expansion. This technique is not used otherwise because determining which arrays can be reduced into a 



single scalar variable is very difficult because there are too many possible side effects. Therefore this is not a 
useful technique for UO performance improvement since is it only used to reverse the effects of scalar 
expansion [ZC91] [L85]. 

3.13 lndex Set Splitting 
Index Set Splitting ís a transformation used to split the index range of a loop in order that fewer elements of 
an array are accessed. If the index range is larger than the page size, then index set splitting can be used to 
improve I/0 performance. Index set splitting can be a useful technique to improve 1/0 behavior. 

3.14 Loop Peeling 
Loop peeling is a technique used to remove anomalies in the control flow of a loop. Loop peeling ís a 
technique similar to index set splitting, but unlike index set splitting. loop peeling is nota useful technique if 
one wants to improve I/0 performance. Index set splitting can be applied to the inner loops, which may 
reduce memory requirernents; loop peeling, on the other hand, involves both the outer and inner loop to 
break up a loop. Since both loops are used, less of each variable is used, which leads to less efficient use of 
resident variables, which leads to more page transfers. Therefore loop peeling is not a useful technique to 
irnprove 110 behavior. 

3.15 Loop Unrolling 
Loop unrolling is a technique where copies of the loop body are rnade so that the loop overhead can be 
reduced. It is not useful to irnprove I/0 performance because it does not reduce memory requirements nor 
does It change the access pattern to match the storage pattern of arrays. 

4. THE ALGORITHM 
We outline the I/0 performance irnprovernent algorithm (IOPIA). We have already determined that the code 
transforrnation techniques useful to irnprove I/0 performance are loop distribution, loop interchange, 
replication (variable copying), node splitting, multiversion loops, scalar expansion, and index set splitting. 
The primary goal is to apply loop interchange because it is the transformation which will provide the rnost 
I/0 performance irnprovernent. Loop interchange cannot be applied when there exists an interchange 
preventing dependence (IPD) in the loop, or if there is an order of índices error (OlE), i.e., the índices for 
A(I,J)=A(J,I) do not match. No transforrnation will elirninate an OlE while loop distribution is the only 
transformation that can eliminare an IPD, by distributing the statements so that the IPD no longer exists in the 
loop. Cyclic dependences will cause loop distribution to fail; to break a cyclic dependence we apply the 
transformations replication, rnultiversion loops and scalar expansion. If the IPD cannot be broken, we use 
replication, rnultiversion loops, scalar expansion and node splitting to distribute as rnuch of the loop away 
frorn the IPD so that sorne of the loop rnight be interchanged. IOPIA can be broken down into two rnain 
cases: processing a single loop and processing a nested loop. In Section 4.1 we explain how the IOPIA 
irnproves the I/0 behavior of a single loop. Section 4.2 applies IOPIA to a nested loop. Section 4.3 
discusses the criteria ensuring that the transformations preserve the sernantics of the given code. Section 4.4 
gives the pseudocode for the IOPIA, Section 4.5 sketches its time cornplexity. 

4.1 Single Loop 
Loop interchange cannot be applíed in a single loop. Single loops cause few page transfers cornpared to 
nested loops, unless the arnount of available rnernory is very lirnited. Thus, little ímprovernent can be 
expected frorn transforming a single loop. For single loops. IOPIA checks if the mernory required by the 
loop exceeds the available rnernory. If so, IOPIA first atternpts to apply loop distribution to reduce the 
mernory requirernents; otherwise, it tries to apply rnultiversion loop. variable copying, scalar expansion and 
node splitting to break the cyclic dependences that caused loop distribution to fail. Once the rnernory 
requirements of the loop is reduced so that the available exceeds the required rnemory, IOPIA terminates. 

4.2 Nested Loops 
Nested loops are where the rnost I/0 improvernent are rnade. Before any transformations are applied, the 
IOPIA checks whether the rnernory required by the loop exceeds the available rnemory. If so, IOPIA 
processes the loop. The goal of IOPIA is to apply loop interchange to a nested loop. The only time when 
interchange cannot be applied is when there exists an IPD in the loop body or when an OlE is detected. If an 
OIE exists, the loops cannot be interchanged. The IPD can occur in two different situations; the IPD is either 
a dependence from a staternent onto itself (Type A; IPD-TA), ora dependence between two different 
staternents (Type B; IPD-TB). For the case IPD-TA, the only transformation technique which rnight be able 

81 



to break the dependence is multiversion Here is the method IOPIA uses to process a nested 
containing an IPD-TA: 

1: 1f applicable, apply multiversion loops to break the IPD 
Step 2: If possible, distribute the loop to separate statements from the IPD 

3: U any statements were not separated from the then apply the appropriate 
loops, variable copying and scalar in order to distribute statements away from 

statements still remain bound to the IPD, apply node splitting (if applicable) in order to 
away from the IPD 

4, the algorithm will examine the of the transformed code is worse than 
the will revert back to the code. 

For the case the dependence may be broken by 
Two statements that have an IPD between them can 

cycle. Here is the rnethod that IOPIA uses to 
l: H distr:ibution to break the 

the tvvo statements into different 
unless 

the version variable 
to the statements and break the IPD 

the IPD cannot be distribute the in order to statements av.;ay from the IPD 
If the IPD cannot be broken and sorne statements could not from the the 

appropriate variable to 
distribute statements away the IPD 

5: If the IPD cannot be broken and sorne statements still remain bound to the node 
in order to separate variables from the IPD 

For each of the techniques involved variable copying, scalar expansion, index set 
we can formulate criteria that assure that tbe resulting from applying the corresponding code 

transformation is semantically valid (i. e., the new code the same results as the original 
Because of the page limit, we refer to [T96] for more inforrnation about these criteria. 

4.4 
The applied to any arbitrary set of statements S 1," .. ,S 11 in a L will either sorne 
improvement to the I/0 behavior of the loop, or in the worst -case, lea ve the loop V/ e collect 
information from the source code and organize it into three tables ([H95, T96]). The first structure is the 
Instruction Table. It contains essentially syntactic inforrnation about the program statements. The second is 
the Table which holds syntactic data specifically about arrays. The final structure is the Index Table 
which the data about the array índices involvedo Because of the page limit, we refer the reader for 
details on the deta structures used in the algorithm to [T96]. 

Here is the pseudocode for the algorithm IOPIA; a comprehensive implementation of this algorithm is 
currently under way: 

GeHe:rai App:roach 

l. Sean the program to build the tables. 
2. Build the dependence graph and enter the data into the Instruction Table 
3. If the memory used in the loop is less than the amount of available memory, then goto 9 
4. If the index table contains more than one loop id, then goto Step 6 
S. Distribute the loop 

5 .l. if distribution fails, or if the distributed cede still more mernory than is 
rnultiversion variable copying, scalar node sp!itting in order to distribute further 

5.2. goto Step 9 
6. if the Instmction Table does not contain an IPD or an OIE, then the loop and 9 
7. if the Instruction Table contains an goto 8.2 
8. if the Instmction Table contains an IPD 

8.1. If the IPD is B, then distribute 
8.1 fails to break the va.riable and scalar 

9 

to break the IPD 



8.2.2. if sorne statements still exist in the same loop as the IPD, apply multiversion loops, variable 
copying and scalar expansion in order to distribute the statements away from the IPD 

8.2.3. if sorne statements still exist in the same loop as the IPD, then apply node splitting 
8.2.4. if we have made things worse, then undo all changes and goto Step 9 

9. return the result · 

Multiversion Loops Algorithm: 
l. if the applicable criterion holds 

1.1. find the values for the runtime value that break the dependence 
1.2. duplicate the entire loop 
1.3. prefix each loop with an if statement for the respective values of the runtime variable 
1.4. distribute the loop which contains the values that do not contain the dependence 

Variable Copying Algorithm: 
l. if the applicable criterion holds 

1.1. create a new variable and new assignment statement 
1.2. insert the new assignment statement befare both statements of the dependence cycle 
1.3. modifv the statement to use the new variable 
1.4. distribute the loop 

Scalar Expansion Algorithm: 
l. if the applicable criterion holds 

1.1. change all occurrences of the se alar variable into an arra y variable 
1.2. distribute the loop 

Node Splitting Algorithm: 
l. if the applicable criterion holds 

1.1. create a new variable and assignment statement 
1.2. insert the statement textually before the two statements which are in volved in a dependence cycle 
1.3. modify the statement to use the new variable 
1.4. distribute the loop 

4.5 Brief Time Complexity Determination of IOPIA 
The IOPIA algorithm is used at compile time, not at run time; thus the time complexity of the algorithm 
depends on the number of statements in the loop, but not the amount of data. The input to the algorithm ís a 
loop L of statements S1, ... ,Sn (of fixed complexity) where n is the number of statements in the loop. Step 1 
requires O(n) time. Step 2 requires O(n2) time. Step 3 is 0(1). Step 4 requires O(n) time, while Step 5 takes 
0(1) time, as does Step 6. Step 7 requires O(n2). Thus, the overall time complexity of the IOPIA algorithm is 
O(n2) where n is the size of the code. Most importantly, IOPIA's time complexity does not depend on the 
size of the data. 

5. DISCUSSION OF RESULTS 
We present examples demonstrating the effectiveness of the code restructuring algorithm. We assume that the 
storage scheme is column major, the working set size WS and page size PS are given as input, and the 
replacement strategy used for virtual memory management is (pure) LRU (Least Recently Used). 
Example 5.1 with WS=2, PS=1024 

Do 1 = 1, 2048 
S1: A(l) = B(l) + C(l) 
S 2 : E(l) = F(l) + G(l) 
S3 : B(l) = C(l) * 2 
S 4 : F(l) = G(l) * 2 
S5 : C(l) = (A(I) + B(l)) 1 C(l) 
S 6 : G(l) = (E(I) + F(l)) 1 G(l) 

End Do 
IOPIA distributes the loop into the following: 

Do 1 = 1, 2048 S1 End Do 
Do 1 = 1, 2048 S3 End Do 
Do 1 = 1, 2048 S5 End Do 
Do 1 = 1, 2048 S2 End Do 
Do 1 = 1, 2048 S4 End Do 
Do 1 = 1, 2048 S6 End Do 83 



84 

Fom of the blocb still more memory than is 
transforrnations to thern. the set size 
transfers, while the transformed code requires 

2048 
ECO + C(X) * 

= B(I) ~ ccn 
= A(I) * C(I) 

"" F(I) * H(I) 

but IOPIA cannot 
the original code requires 

of 24.98%. 

PS=2048: IOPIA distributes the code m: 
Do I ,_ 1, 2048 End Do 
Do I "" 1, 2048 
Do I = 1, 2048 End Do 

code page while the transformed code 

other 
page 

of 

Case 2 
the last 

PS=2048: First IOPIA does 
exceed the available memmy, so 

2048 

the first and 

* 

The 28,672 page the transformed code 1 for an '"'''"".'""''m 
57.12%. continues to process loops until their memory requirements are 
available resources, or until no more transfonnations can be perfonned. 

Do 
After the initial distribution step of IOPIA, no change is made to the loop because nothing can be distlibuted. 

IOPIA applies two different transfonnations, variable copying and scalar expansion. Variable copying 
creates a new statement and modifies the statement S3, resulting in (after distribution): 

Do I "" 1, 2048 
S0 : Tl(I) = B(I+l) 

End Do 
Do I = 1, 2048 

S1 : A = B(I) + C(Jí) 
S2 : B(I) = A * DOO 
S3': C(I) = B(I) + T1(I) 
s4: ECO = C(I) * D(I) 
S5 : D(I) = A * A 

End Do 
Scalar expansion changes al! of the occurrences of the scalar variable A into an arra y variable, resulting in 
(after distribution): · 

Do I = 1, 2048 S0 End Do 
Do I = 1, 2048 S1 End Do 
Do ! = 1, 2048 S2 End Do 
Do I = 1, 2048 S3 End Do 
Do I = 1, 2048 S&, Ena Do 
Do I = 1~ 2048 S5 End Do 

The original code requires 6,145 page transfers, the transformed code 11, an improvement of 99.82%. 



Example 5.4 
Do I = 1, 2048 

Do J = 1, 2048 
S1 : A(I,J) = B(I,J) + C(I,J) * D(I,J) 
S2 : B(I,J) = C(I,J) + D(I,J) 
S3 : C(I,J) = C(I,J) + C(I-1,J+1) 
S4 : E(I,J) = F(I,J) - G(I,J) 
S5 : F(I,J) = E(I,J) * E(I,J) 
S6 : H(I,J) = F(I,J) + G(I,J) * E(I,J) 

End Do 
End Do 
WS = 1000, PS = 1024 

IOPIA detects an IPD-TA in the loop and tries to apply multiversion loops whích fails to break the IPD. Then 
IOPIA tries to distribute the loop in arder to distribute as many statements away from the IPD. All the 
statements can be distributed, so IOPIA distributes them and interchanges the loops, resulting in: 

Do J = 1, 2048 Do I = 1, 2048 S1 End Do End Do 
Do J = 1, 2048 Do I = 1, 2048 S2 End Do End Do 
Do I = 1, 2048 Do J = 1, 2048 S3 End Do End Do 
Do J = 1, 2048 Do I = 1, 2048 S4 End Do End Do 
Do J = 1, 2048 Do I = 1, 2048 S5 End Do End Do 
Do J = 1, 2048 Do I = 1, 2048 S6 End Do End Do 

This example showns how to us loop distribution in conjunction with loop interchange. The original loop 
cannot be interchanged because of the interchange preventing dependence in statement S3. But after applying 
loop distribution, the statements are broken up into individualloops which allow the other fíve statements to 
be interchanged. The original code requires 33,558,528 page transfers, the transformed corl.e an 
improvement of 87.29%. 

6. CONCLUSION 
We presented an algorithm that improves the I/0 behavior of a given program by applying code 
transformations to it. These are loop distribution, loop interchange, multiversion loops. variable copying, 
scalar expansion and node splitting. We demonstrated the power of our algorithm by several examples and 
showed that it can greatly improve a program's I/0 performance. Future enhancements include improving the 
analysis of the Instruction Table so that one can tell if a particular transformation will improve performance 
or not, as well as improving the dependence analysís so that we can determine whether interchange or index 
set splitting should be applied, if an arder of índices error occurs. 

7. BIBLIOGRAPHY 
[C84] R. W. Carr, Virtual Memory Management, UMI Research Press, Ann Arbor, Michigan, 1984. 
[H95] Y. R Hseu, Automatic 110 Behavior lmprovement Through Loop lnterchanges, M. S. Thesis, 

Department of Computer Science, University of Houston, 1995. 
[L85] B. R. Leasure, The Parafrase Project's Fortran Analyzer. Major Module Documentation. Technical 

Report CSRD-504, Department of Computer Science, University of Illinois at Urbana-Champaign. 
[L95] E. L. Leiss, Parallel and Vector Computing: A Practicallntroduction, McGraw-Híll, Inc., 1995. 
[PW86] D. A Padua and M. J. Wolfe, Advanced Compíler Optimizatíons for Supercomputers, CACM, 

December, 1184-1201, 1986. 
[172] R. E. Tarjan, Depth First Search and Linear Graph Algorithms, Computing, 1, 1972. 
[T96] W. C Tu, 110 Peiformance lmprovement Through the Use oj Code Transjormations, M. S. Thesis, 

Department of Computer Science, University of Houston, 1996. 
[W82] M. J. Wolfe, Optimizing Supercompilers for Supercomputers, Ph.D. Dissertation, Technical Report 

82-1009, Department of Computer Science, University of Illinois at Urbana-Champaign, 1982. 
[ZC91] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers, Addison-Wesley, 

New York, NY, 1991. 

85 


